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Natural convection in an air-filled (Prandtl number = 0.7) porous cavity with profiled side cooling and
constant bottom heating is investigated over the Rayleigh number range of 1� 104 to 1� 108 at two
Darcy numbers: 1� 10�4 and 1� 10�6. The aspect ratio based on cavity height was varied from 0.5 to
0.1 to investigate penetration length according to linear or sinusoidal temperature profile. The general
non-Darcy model adopted in this work was validated against experimental and theoretical results in
the literature and Nusselt number was predicted within less than 3% in the worst case. The effect of left
wall imposed temperature profile was investigated in detail. Different convective regimes were observed
depending on the imposed profile. An active region was found to take place with the linear temperature
profile and with extent proportional to Rayleigh number as predicted by scale analysis.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Flow and heat transfer in porous media has been extensively
modeled due to the wide variety of applications in areas such as
geothermal systems, the petroleum industry and metal processing.
A comprehensive literature review is provided in [1,2]. Early
numerical studies were based on the Darcy model due to the rela-
tive ease of solving the resulting equations for conservation of
momentum. However, the Darcy law applies only to slow flows
and does not account for inertial and boundary effects (known as
non-Darcy effects) which become important in practical situations
where flow velocity is relatively high or a boundary is present.
Vafai and Tien [3] provide a detailed discussion on these non-Dar-
cian effects.

Recent studies have considered other effects such as the vari-
able porosity in Nithiarasu et al. [4] and radiation and non-equilib-
rium models in Badruddin et al. [5].

Another research stream addresses flow and heat transfer
induced by a vertical cylinder immersed in a porous medium.
Minkowycz and Cheng [6] analyzed natural convective flow
around a vertical cylinder embedded in a saturated porous med-
ium, where cylinder surface temperature is a power function of
cylinder height. They obtained exact and approximate solutions
using boundary-layer approximations. Vasantha and Nath [7] used
an extended perturbation series method to obtain a numerical
solution for the thermal boundary-layer along an isothermal cylin-
ll rights reserved.

: +1 514 321 4150.
der).
der in a porous medium. Bejan [8,9], from his analysis of natural
convection in a vertical cylindrical well filled with a porous med-
ium, pointed out that an important feature of similarity flow is that
the depth to which the free-convection pattern penetrates the well
is proportional to the temperature difference driving the flow.

To qualitatively measure the flow front penetration, Manca and
Nardini [10] experimentally studied convective cell development
in an open horizontal cavity and showed that its strength is pro-
portional to Ra.

Profiled heating in rectangular fluid-filled cavity has been inves-
tigated by Ben Yedder and Bilgen [11] and Poulikakos [12], among
others, demonstrating the effect of Ra on penetration length. Re-
cently, Sathiyamoorthy et al. [13] investigated non-uniform heat-
ing of a porous cavity without considering the effect of aspect
ratio or the temperature profile on the side boundary. This suggests
that the knowledge of flow characteristics in such configurations
remains incomplete: multi-cellular flow, stagnant regions and pen-
etration length are all closely related to the imposed profile bound-
ary temperature.

The above studies suggest that the extent of the main active
convective cell is proportional to the temperature difference
driving the flow. The aim of this work is to clarify the effect of
boundary conditions on flow in a tall porous cavity using the Brink-
man-extended Darcy equations of motion, including convective
terms. Few studies have addressed the effect of profiled cooling
on flow and heat transfer characteristics in porous cavities with
variable aspect ratio. Moreover, the model can be directly applied
to optimize fuel cells, where heat front propagation is a major
concern, and to geothermal layers where a good estimation of fluid
penetration length is important.

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.08.016
mailto:ridha.benyedder@uqat.ca
http://www.sciencedirect.com/science/journal/00179310
http://www.elsevier.com/locate/ijhmt


Nomenclature

A half-cavity aspect ratio, = L=2H
cp heat capacity, J/kgK
g acceleration due to gravity, m/s2

h penetration length, m
H cavity height, m
k thermal conductivity, W/mK
K medium permeability
L cavity width, m
Nu Nusselt number, Eq. (13)
p0 pressure, Pa
p dimensionless pressure, ¼ ðp0 � p01ÞH

2=qa2

Pr Prandtl number, ¼ m=a
Ra Rayleigh number, ¼ gbDTH3=ðmaÞ
t0 time, s
T temperature, K
DT temperature difference, ¼ Th � Tc , K
u;v dimensionless Darcy velocities, ¼ u0H=a; v 0H=a
x; y dimensionless Cartesian coordinates, = x0=H; y0=H
x0; y0 Cartesian coordinates

Greek symbols
a diffusivity, m2/s

b volumetric coefficient of thermal expansion, 1/K
� porosity
m kinematic viscosity, m2/s
q fluid density, kg/m3

w stream function
h dimensionless temperature, = ðT � TcÞ=DT
t dimensionless time, at0=H2

Superscripts
- average
0 dimensional values
� modified numbers

Subscripts
a air
c cold, ambient value
h hot, active
loc local
max maximum
min minimum
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2. Mathematical model

The problem under study is depicted in Fig. 1. Temperature pro-
files are imposed along the left and right walls and the bottom wall
is maintained at a constant, higher temperature. This temperature
difference drives a Bénard type flow. The extent and topology of
the flow depends on the imposed temperature gradient. In this
study, two temperature profiles are considered:

Tðy0Þ ¼ Tc þ DT cos p
2

y0

H

� �

Tðy0Þ ¼ Tc þ DT 1� y0

H

� �
9>=
>; ð1Þ

For purposes of this study, the following assumptions were made:
the flow is a two-dimensional, laminar and incompressible Newto-
nian fluid, with no viscous dissipation. Gravity acts in the vertical
direction, porous properties are constant, density variations are
ignored – except in the buoyancy term (the Boussinesq approxima-
tion) – and radiation heat exchange is negligible.

The governing equations are based on the Darcy–Brinkman
model (see [4]).
Fig. 1. Problem under study.
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In non-dimensional form, and following the dimensionless quanti-
ties provided in the nomenclature, these equations become:

@u
@x
þ @v
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¼ 0 ð6Þ
@u
@t
þ u

@u
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þ v @u
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@y
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This produces the following dimensionless numbers - that charac-
terize convective flow in porous media:

Ra ¼ gbDTH3

ma
Pr ¼ m

a
Da ¼ K

H2 ð10Þ

Considering the above-made assumptions and because the problem
is symmetric, the governing equations are solved on only half the
domain, with the following non-dimensional boundary conditions:
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On all solid boundaries : u ¼ v ¼ 0
On the symmetric plane : x ¼ A u ¼ 0; @v

@x ¼ 0; @h
@x ¼ 0

On x ¼ 0; 0 < y < 1 h ¼ hðyÞ
On y ¼ 0; 0 < x < A h ¼ 1
On y ¼ 1; 0 < x < A @h

@y ¼ 0

9>>>>>>=
>>>>>>;
ð11Þ
3. Numerical procedure and validation

The SIMPLER (Semi-Implicit Method for Pressure Linked Equa-
tions Revised) algorithm [14] is used to solve Eqs. (6)–(9). The dis-
cretized equation system, using the hybrid interpolation scheme
for the advection term, is iterated in time until a steady state solu-
tion is obtained:X
ð/ij � /old

ij Þ 6 10�4 ð12Þ

where / stands for the dependent variables u;v and h.
The computer code based on the above-presented mathemati-

cal equations was validated earlier [11,15] for the benchmark case
of a differentially heated cavity [16] and will not be repeated here.
Validation of the porous media case is also compared against
[4,17,18] for different porosity values �.

The results obtained with the modified model are consistent
with those of [4] (see Table 1) which, for validation purposes, ig-
nored the non-linear drag term in the momentum equations, and
hence used the same model as above. Table 2 compares the Nu
number for the case where � ¼ 1:0. The differences, albeit within
less than 3%, are greater for high Ra in this case. In their validation,
Le Bars and Worster [17] neglected the advection term, allowing
them to obtain results independent of Pr. In the present study,
however, Eqs. (6)–(9) are solved without any further assumptions.
Our results are therefore expected to depart from theirs with
increasing Ra, indicating at the same time the increasing effect of
advection.
Table 1
Comparison of Nu for a differentially heated porous cavity with uniform porosity –
81 � 81 grid, Pr ¼ 1:0.

Da Ra � ¼ 0:4 � ¼ 0:9

Present
study

[17] [4] Present
study

[17] [4]

10�6 107 1.08 1.08 1.08 1.08 1.09 1.08

108 3.07 3.07 2.99 3.08 3.08 3.01

109 12.85 12.9 12.0 13.08 13.15 12.2

10�2 103 1.01 1.01 1.02 1.02 1.02 1.02

104 1.41 1.41 1.69 1.67 1.67 1.70

105 3.17 3.17 3.80 4.09 4.09 4.19

5� 105 5.24 5.24 6.20 6.89 6.89 7.06

Table 2
Comparison of Nu for a differentially heated porous cavity – 81 � 81 grid, Pr ¼ 1:0.

Da Ra Present study [17] [18] [4]

10�6 107 1.08 1.08 1.07 1.08

108 3.10 3.08 3.06 3.004

109 13.41 13.2 13.22 12.25

5� 109 31.7 30.9 31.50 –

10�4 105 1.07 1.07 1.06 –

106 2.86 2.85 2.84 –

107 10.37 10.3 10.34 –

5� 107 20.56 20.1 20.85 –
4. Results and discussion

4.1. Flow description

This section describes the flow characteristics for both bound-
ary conditions considered in this study.

4.1.1. Case A: left wall with a linear profile
The flow is characterized by a dominant anti-clockwise cell that

starts at the upper part of the cavity at low Ra and extends to fill
the entire cavity as Ra increases. For A ¼ 0:5, a second cell forms
in the hot lower corner due to the development of a temperature
gradient in this area. For low A values, no secondary flow is appar-
ent. Fig. 2 shows the streamlines and isotherms for the left and
right half of the cavity respectively. At Ra ¼ 105, the flow is weak
and heat transfer is dominated by conduction, at Ra ¼ 106, the flow
is stronger and deformed isotherms show signs of convection on-
set. Convection regime is firmly established only at Ra ¼ 5� 106

as seen from the meandering isotherms. A secondary, clockwise
cell appears in the lower left corner of the cavity.

Fig. 2 is qualitatively identical to the results published in [13],
which used finite-element approach, and confirms the validity of:

1. the finite-difference method adopted;
2. the implementation of the symmetry boundary condition per-

mitting the use of half the computational domain.

The left side of Fig. 3 shows that part of the cavity is filled with
calm, stratified medium, especially at lower Ra � Da. The extent of
the convective cell clearly increases as this product increases.

4.1.2. Case B: left wall with a sinusoidal profile
A sinusoidal cooling profile produces a two-cell pattern with

competing behaviors. The upper cell behaves exactly as the main
cell in Case A: the fluid loses energy to the surrounding walls
and descends towards the middle of the cavity, where it starts to
gain heat and consequently travels up the adiabatic boundary.
The lower part of the cavity is occupied by a clockwise circulating
cell, that increases in intensity as Ra increases. As a consequence of
this flow pattern, no clear penetration length is established, as seen
on the right of Fig. 3.

The two-cell pattern is reconfirmed in Fig. 4 for Da ¼ 10�6 and
A ¼ 0:5. A weak clockwise cell is present even at low Ra increasing
in intensity to match the main anti- clockwise cell as Ra increases.
Compared to Fig. 2, the sinusoidal temperature profile is clearly
sufficient to maintain this multi-cellular pattern even for a moder-
ate aspect ratio.

4.2. Heat transfer

Perhaps the most significant quantity for engineering applica-
tions is the overall Nu number or the ratio of convective to conduc-
tive heat transfer between a solid boundary and a moving fluid,
defined here as:

Nu ¼
Z 1

0
Nulocdy ¼

Z 1

0

@h
@x

dy ð13Þ

Nu plotted as a function of Ra (not shown) was found to agree with
the results of Sathiyamoorthy et al. [13]. In order to understand the
effect of the heating profile, the local distribution of the Nu number
must also be investigated.

4.2.1. Case A
Fig. 5 shows the local Nuloc distribution along the left wall. At

low and moderate Ra, almost no heat is gained from the surround-



Fig. 2. Streamlines (left) and isotherms (right) for Da ¼ 10�4 and A ¼ 0:5 cooled
with linear profile. (a) Ra¼105ðwmax¼0:085;wmin¼0:0Þ, (b) Ra¼106ðwmax¼1:920;
wmin¼0:0Þ, and (c) Ra¼5�106ðwmax¼6:386;wmin¼�3:764Þ.

Fig. 3. Streamlines and isotherms for Da ¼ 10�6 and A ¼ 0:2 cooled with linear
(left) and sinusoidal (right) profiles. (a) Ra ¼ 108, left ðwmax ¼ 0:160;wmin ¼ 0:0Þ,
right ðwmax ¼ 0:227;wmin ¼ �0:111Þ and (b) Ra ¼ 5� 108, left ðwmax ¼ 3:625;
wmin ¼ 0:0Þ, right ðwmax ¼ 2:018;wmin ¼ �2:293Þ.
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ings for 80% of the cavity height, because the convective cell occu-
pies only the upper part of the cavity. For the remaining 20%, heat
is lost due to the temperature gradient between the hot porous
media and the relatively cold wall. At higher Ra, heat is gained
from the bottom part of the cavity and released to the upper part,
giving a nearly constant value of Nu as a function of Ra, as can be
seen from the area under the Nuloc curve. Note that, for tall cavities,
the point at which the cavity starts to lose heat to the surrounding
walls ðNuloc < 0Þ does not depend on Ra, and occurs at y � 0:8.
With taller cavities ðA ¼ 0:5Þ, multi-cellular flow occurs at high
Ra and Nu distribution starts to show a wavy pattern (Fig. 6).

The overall Nu for two aspect ratios as a function of Ra is de-
picted in Fig. 7 where the Nu scale has been adjusted to account
for the weaker heat transfer in tall cavities ðA ¼ 0:2Þ. As expected,
the onset of convection happens at higher Ra as Da decreases indi-
cating a need for higher temperature gradient at lower permeabil-
ity. It is interesting to note a slight inflection point happening
towards the end of the conduction regime. It is more visible for tal-
ler cavity but can also be seen for A ¼ 0:5 and was also reported
elsewhere [13]. Further increase of Ra beyond this point firmly
establishes the convection regime as it can be seen for A ¼ 0:5.
The overall heat transfer is lower for lower A due to a weaker con-
vective cell in this case and to the presence of a stratified, motion-
less region. For instance, at Da ¼ 10�6;wmax and wmin equal 6.75 and
�4.13 respectively for A ¼ 0:5 and decrease (in absolute values) to
wmax ¼ 3:625 and wmin ¼ 0:0 for A ¼ 0:2.



Fig. 4. Streamlines (left) and isotherms (right) for Da ¼ 10�4 and A ¼ 0:5 cooled
with sinusoidal profile. (a) Ra¼105ðwmax¼0:076;wmin¼�0:019Þ, (b) Ra¼106ðwmax¼
1:298;wmin¼�0:099Þ and (c) Ra¼3�106ðwmax¼2:890;wmin¼�2:380Þ.

Fig. 5. Local Nusselt distribution along the left wall for a linear cooling profile.
Da ¼ 10�6 and A ¼ 0:2.

Fig. 6. Local Nusselt distribution along the left wall for a linear cooling profile.
Da ¼ 10�6 and A ¼ 0:5.
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4.2.2. Case B
As opposed to Case A above, the Nuloc distribution is no longer a

two-pattern profile (see Fig. 8) due to the multi-cellular flow. The
left wall can now be divided into four regions: starting from the
bottom, heat is gained from the hot wall, causing a clockwise flow,
the porous media then starts to lose heat to the surroundings. At
the same time, a counter-clockwise cell occupying the top of the
cavity loses heat at the top left corner, then starts to rise after
receiving heat from the relatively hot wall.

Fig. 9 shows the Nu number for the sinusoidal profile as a func-
tion of Ra. The same observations as in case A are still valid except
for A ¼ 0:2. In the case of tall cavities, the sinusoidal profile pro-
motes multi-cellular flow and enhances heat transfer by convec-
tion. In contrast, tall cavities with linear cooling profile exhibit a
stagnated region with minimal heat transfer (see Fig. 3a).



Fig. 7. Overall Nusselt on the left wall for a linear cooling profile as a function of Ra
for Da ¼ 10�4;Da ¼ 10�6 and A ¼ 0:2;A ¼ 0:5.

Fig. 8. Local Nusselt distribution along the left wall for a sinusoidal cooling profile.
Da ¼ 10�6 and A ¼ 0:2.

Fig. 9. Overall Nusselt on the left wall for a sinusoidal cooling profile as a function
of Ra for Da ¼ 10�4;Da ¼ 10�6 and A ¼ 0:2;A ¼ 0:5.
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4.3. Scale analysis

From the above results, it appears that when the cavity is line-
arly cooled, the fluid in the bottom part stagnates so that only a
portion of the cavity participates in the convection process. This
behavior intensifies with increasing cavity height and decreasing
Ra.

Let hy represent the extent of the convective cell. hy is much
greater than the cavity width:

hy � L ð14Þ

The pressure term is first eliminated from the governing Eqs. (2)–
(5) by taking the derivative of the x-momentum and y-momentum
equations and combining them. Considering Eq. (14) and further
analysis of the order of magnitude of various terms in the conserva-
tion of mass, momentum, and energy leads to the following scales:

u0

L
� v 0

hy
ð15Þ
v 0
L
� Kgb

m
DT
L

ð16Þ
u0
DT
L
� a

DT

L2 ð17Þ

Solving for hy gives:

hy

H
� L

H

� �2

DaRa ð18Þ

Fig. 10 shows the velocity distribution on the right adiabatic plane
(symmetry plane) as a function of Ra. The point where vertical
velocity is less than a fraction of the maximum velocity (10% of
vmax) is superimposed on the velocity plot, and is considered here
to be a measure of the penetration length hy.

The dots in Fig. 10 clearly show that this distance is linearly pro-
portional to Ra at moderate Rayleigh numbers. When Ra ¼ 4� 108,
the convective cell covers the entire domain, for complete penetra-
tion. Beyond this state, further increase in Ra only increases the
intensity of the convective cell or gives rise to secondary flow
(Fig. 2c).

Fig. 11 shows the linear relation between penetration length
and the RaDa product for a typical tall cavity ðA ¼ 0:2Þ. The figure
shows that the assumption is valid only for moderate RaDa, be-
cause for small values of this product, conduction is the dominant
form of heat transfer and hy takes an asymptotic value of about 0.5.
The same is true for the high RaDa regime, where hy departs from
the plotted linear correlation due to the presence of a physical low-
er boundary that limits the extent of the convective cell, or in cer-
tain cases gives rise to multiple cells.



Fig. 11. Penetration length hy as a function of RaDa.

Fig. 10. Vertical velocity distribution on the symmetry plane as a function of
Ra;Da ¼ 10�6.
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5. Conclusion

A Darcy–Brinkman model is solved by a finite-difference meth-
od on half a rectangular cavity. Results are presented in terms of
isotherm and streamline distribution and Nu profiles along the
active wall at different Ra and Da numbers as well as aspect
ratio A.

It appears that the flow is mostly unicellular when a linear pro-
file is imposed (Case A), and a weak cell develops in the lower part
of the cavity only at higher Ra with a nearly square cavity. In this
case, scale analysis shows that the convective cell extent is propor-
tional to both the RaDa product and the aspect ratio.

When a sinusoidal profile is imposed (Case B), the flow becomes
bi-cellular, with clockwise circulation lower cell. These findings
highlight the effect of boundary conditions on flow and heat trans-
fer in tall cavities. Multi-cellular flow, and hence a wavy heat
transfer pattern, is promoted by:

1. a sinusoidal temperature profile, in which the heating effect
shifts towards the bottom wall;

2. lower aspect ratio (tall cavity).
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